If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=((-16H^2)+64H)+42
We move all terms to the left:
-(((-16H^2)+64H)+42)=0
We calculate terms in parentheses: -(((-16H^2)+64H)+42), so:We get rid of parentheses
((-16H^2)+64H)+42
We calculate terms in parentheses: +((-16H^2)+64H), so:We get rid of parentheses
(-16H^2)+64H
We get rid of parentheses
-16H^2+64H
Back to the equation:
+(-16H^2+64H)
-16H^2+64H+42
Back to the equation:
-(-16H^2+64H+42)
16H^2-64H-42=0
a = 16; b = -64; c = -42;
Δ = b2-4ac
Δ = -642-4·16·(-42)
Δ = 6784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6784}=\sqrt{64*106}=\sqrt{64}*\sqrt{106}=8\sqrt{106}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-8\sqrt{106}}{2*16}=\frac{64-8\sqrt{106}}{32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+8\sqrt{106}}{2*16}=\frac{64+8\sqrt{106}}{32} $
| x+3x2=x-4x4 | | x+3(2)=4-x(4) | | Y=-0.4x+0.4 | | 2m+6=12+8 | | 4(p+6)^2=0 | | (1/5)^x=625 | | 9=10v-7v | | 40=3x+2x | | 12-3e=52+5e | | 25-1,5=41-2,5t | | 3t−18=4(−3−4/3t) | | 3t−18=4(−3−43 t) | | .12x+x=58360 | | 11/2(2−4h)=6h | | 30x+5x=113 | | 5a-10=4a-4 | | 0.25x-0.125=-3x | | 4/7x=8/21 | | 1/4x-1/8=-3x | | 3/7=h/14−2/7 | | 2x÷3+5=x+6 | | x/3+1=x/4=1 | | 8=2x+2/3x | | x1/3+1=x/3=1 | | Y=4-3x4 | | 7.50=2/3x | | 10x^2+40x+80=0 | | 2x+7/9-4=x-7/12 | | x+3x+2(3x)=300 | | 10x^2=40x=80 | | x+3=(3x+37)^1/2 | | 2b/7-5/7=b/3 |